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Abstract The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is
assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some
models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble
are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental
Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era
Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese
55-year reanalysis) in winter and summer for 1981–2010 period. In addition, we compare cyclone statistics
between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000–2010. Biases in cyclone frequency,
intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are
partly attributed to the differences in cyclone frequency over land. The variations across the models are
largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at
200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed
in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in
the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone
characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement
with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models
with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail
to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

1. Introduction

Сyclones contribute to the meridional atmospheric heat and moisture transport from midlatitudes into the
Arctic, thereby changing cloud feedback with impacts on the sea-ice retreat in a warming climate
(Chernokulsky et al., 2017; Mokhov et al., 2009; Simmonds & Keay, 2009; Zhang et al., 2013). Advection of heat
by eddies from lower latitudes provides more than half of the annual heat transport to the Arctic climate sys-
tem and most of the heat transport in winter. Sea-ice changes can impact the cyclone activity in the Arctic by
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modifying the baroclinicity (e.g., Inoue et al., 2012; Rinke et al., 2013), and in turn, cyclones can affect the sea
ice. An example of the latter was the destruction of sea ice by the intense Arctic cyclone that occurred in sum-
mer 2012 contributing to the record sea-ice minimum that year (Kriegsmann & Brümmer, 2014; Parkinson &
Comiso, 2013; Simmonds & Rudeva, 2012; Zhang et al., 2013). Thus, cyclones are a key component of the
Arctic climate system and their representation in climate models should therefore be realistic.

Long-term changes in cyclone activity over the Arctic have been analyzed inmany studies based on reanalysis
data (Brümmer et al., 2000; Koyama et al., 2017; McCabe et al., 2001; Sepp & Jaagus, 2011; Simmonds et al.,
2008; Zhang et al., 2004). Using National Centers for Environmental Prediction (NCEP)/National Center for
Atmospheric Research reanalysis, Sepp & Jaagus (2011) found an increasing number of cyclones (including
deep cyclones) in the Arctic in winter and summer in the last decades. Using the same data and period,
Zhang et al. (2004) noted that the number and intensity of cyclones entering the Arctic from the midlatitudes
have increased, particularly in summer. The same results were obtained by McCabe et al. (2001) for winter but
for the last four decades. Akperov and Mokhov (2013) found an increase in the number and a decrease in the
mean size of cyclones in the polar regions (north of 60°N) using NCEP/National Center for Atmospheric
Research reanalysis data for the 1948–2007 period. However, Simmonds et al. (2008) showed that different
cyclone characteristic trends depend on both the analyzed period and the choice of reanalysis data.

Simmonds et al. (2008) noted a link between the Arctic Oscillation (AO) phase and cyclone characteristics,
wherein a positive phase of the AO is associated with more frequent, deeper, and larger cyclonic systems
in the Arctic region. The correlations with AO are particularly strong in summer as discussed by Serreze
and Barrett (2008). Variability in extreme cyclones is closely linked with the winter AO (Thompson &
Wallace, 1998). This suggests that a positive AO index is associated with an increase of baroclinicity, increas-
ing cyclogenesis, and number of extreme cyclones in the Arctic.

Cyclone activity in the Arctic under current and future climate has been investigated in global climate models
(GCMs) (e.g., Christensen et al., 2013; Nishii et al., 2015; Orsolini & Sorteberg, 2009; Vavrus, 2013). Vavrus
(2013) showed that Coupled Model Intercomparison Project Phase 5 (CMIP5) models are able to reproduce
the basic characteristics of extreme Arctic cyclones in the Arctic, despite their relatively coarse resolution.
However, the low resolution of these models generally prevents the appropriate representation of mesoscale
polar lows (diameter ~400 km).

An alternative approach to analyze cyclone activity over the Arctic is regional climate models (RCMs) and, in
particular, ensembles of RCMs. This approach combines the benefits of a multimodel ensemble with the
increased resolution to provide a platform for a robust analysis of Arctic cyclone activity. The Arctic
CORDEX initiative (COordinated Regional climate Downscaling EXperiment; http://climate-cryosphere.org/
activities/targeted/polar-cordex/arctic) is an international coordinated framework to produce an improved
ensemble of regional climate change projections as the input for impact and adaptation studies aimed at
a better understanding of the regional climate in the Arctic. Unlike GCMs, RCMs can adequately resolve
mesoscale processes that are crucial for representing the mesoscale cyclones, in particular polar lows
(Akperov et al., 2015; Shkolnik & Efimov, 2013; Spengler et al., 2017).

One way of improving atmospheric circulation and cyclone activity in RCMs is the application of a spectral
nudging (SN) procedure (von Storch et al., 2000). SN is a method whereby the large spatial scales of the
RCM are nudged toward the large scales of the driving reanalysis in order to achieve an atmospheric state
in the regional domain close to the driving field. As noted by Berg et al. (2013) the SN reduces biases through-
out the free troposphere and improves the mean sea level pressure (MSLP). Previous studies have shown that
RCMs with the use of SN successfully reproduce polar low characteristics in the Arctic (Kolstad & Bracegirdle,
2016; Zahn & Von Storch, 2008). RCMs with SN also show a good representation of extratropical cyclone char-
acteristics (Côté et al., 2015).

Based on CMIP3/5 models’ analysis, Nishii et al. (2015) showed that the spatial patterns of cyclone activity
over the Arctic in summer are closely connected with climatological circulation fields. A close association
of the cyclone activity with the mean zonal wind at 250 hPa was found in the Norwegian Sea area in winter
and summer for CMIP5 models (Seiler & Zwiers, 2016; Zappa et al., 2013). Orsolini and Sorteberg (2009) noted
that changes in high-latitude 300 hPa zonal winds and storminess are connected with the increase in the sur-
face thermal contrast between the Eurasian continent and the Arctic Ocean in summer. Woollings et al. (2010)
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found a linkage between the cyclone track density and 250 hPa zonal wind biases in the North Atlantic.
Mizuta (2012) noted a relationship between the number of intense cyclones and jet stream speed over the
North Pacific. However, over the North Atlantic, they only found a weak association, which is possibly related
to a disagreement in surface temperature change in models affected by the circulation changes in the
Atlantic Ocean. Therefore, it is interesting to examine the impact of different nudging methods in RCMs on
the representation of atmospheric circulation and their connection with cyclone activity in the Arctic.

The aim of this study is to assess the performance of Arctic CORDEX RCMs relative to several reanalysis products
and to evaluate the role of large-scale SN in representing cyclone activity characteristics and their spatio-
temporal variability. Understanding the physical mechanisms beyond intermodel spread and biases in cyclone
activity characteristics in current climate may help to improve the simulation Arctic processes by climate models.

2. Data and Methods
2.1. Model and Reanalysis Data

We analyze cyclone characteristics obtained from 6-hourly MSLP data from an ensemble of 13 atmospheric
RCM simulations and four reanalysis products (Table 1) during the 1981–2010 period for the Arctic region
(north of 65°N) for two seasons—winter (December-January-February) and summer (June-July-August).
COSMO Climate Limited-area Model (CCLM) data are only available for the winter season. We also analyze
monthly mean zonal wind at 850 and 200 hPa for both seasons.

The five reanalysis products used are ERA-Interim, NCEP-Climate Forecast System Reanalysis (CFSR), National
Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications
Version 2 (NASA-MERRA2), Japan Meteorological Agency-Japanese 55-year reanalysis (JMA-JRA55), and
Arctic System Reanalysis version 2 (ASRv2), hereafter called ERA-Interim, CFSR, MERRA2, JRA55, and ASR
(Table 1). The reanalysis data sets vary from 15 to 75 km in the horizontal resolution and from 60 to 72 levels
in the vertical resolution. ASR data cover only short period (2000–2010), and all comparison of ASR to ERA-
Iinterim or other reanalyses is based on this shorter period (if not otherwise noted).

The 13 Arctic CORDEX RCM simulations (Table 1) are based on the standard Arctic CORDEX model setup
(http://climate-cryosphere.org/activities/targeted/polar-cordex/arctic). The domain and the horizontal reso-
lution are nearly the same (0.44° or ~45 km). Only the CCLM model applies a higher resolution (15 km), but
data are only available for the winter season. The vertical resolution and domain extent varies from model
to model, from 23 to 60 levels. The models use the same lateral atmospheric boundary conditions from
the ERA-Interim data and over ocean; sea surface temperature and sea-ice concentration are also obtained
from ERA-Interim. An exception is the CCLM model where satellite-derived sea-ice concentration
(European Organisation for the Exploitation of Meteorological Satellites, 2015) and ice thickness from Pan-
Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (Zhang & Rothrock, 2003) are used. Some of
the models use large-scale SN, some run free (without nudging). One of the models (RCM RCA4 coupled with
dynamic vegetation and ecosystem biogeochemistry simulated by the vegetation-ecosystem model
LPJ-GUESS (RCA-GUESS)) has the Land Surface Scheme coupled with dynamic vegetation and ecosystem
biogeochemistry simulated by the vegetation-ecosystem model Lund-Potsdam-Jena General Ecosystem
Simulator (Smith et al., 2011; Zhang et al., 2014). More detailed information about the RCMs (resolution,
nudged fields, etc.) is presented in Table 1. All reanalysis and model data adopt the Arctic CORDEX grid
(rotated 0.44° × 0.44° grid, 116 × 133 grid points).

2.2. Cyclone Identification

We use an algorithm of cyclone identification similar to Bardin and Polonsky (2005) and Akperov et al. (2007)
with some modifications for the Arctic region (Akperov et al., 2015). The algorithm is based on the MSLP field
and has been shown to be useful to investigate the changes in cyclone activity in extratropical and high lati-
tudes (Akperov et al., 2015; Akperov & Mokhov, 2010; Neu et al., 2013; Simmonds & Rudeva, 2014; Ulbrich
et al., 2013). It should be noted that more than half of the cyclone identification methods presented in the
Intercomparison of Mid Latitude Storm Diagnostics project (Neu et al., 2013) are pressure-based identification
methods. MSLP fields are also used to detect intense polar mesocyclones (polar lows) in the Arctic that form
during the cold season over the relatively warm open water in the Arctic (Rasmussen & Turner, 2003).
Cyclones can also be detected based on vorticity maps. However, the vorticity-based method strongly
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depends on the spatial resolution of the data and produces more small-scale cyclones than the pressure-
based method. In case of polar lows, Laffineur et al. (2014) cautioned to use a vorticity-based method for
polar low identification and tracking because vorticity maxima can also be associated with troughs. Hence,
we choose cyclone characteristics using MSLP data fields.

We calculate cyclone frequency, depth, and size. The cyclone frequency is defined as the number of cyclone
events per season. To map spatial patterns of cyclone characteristics, we use the grid with circular cells of a
2.5° latitude radius. The temporal and spatial correlation analysis is based upon the Pearson correlation coef-
ficient (R). As an indicator of the robustness of any trends we calculate their statistical significance using a
Student’s t test at the 90% confidence level (P < 0.1).

We consider depth as ameasure of cyclone intensity. The cyclone depth is determined as a difference between the
minimum central pressure in the cyclone and the outermost closed isobar. As shown in previous studies (Golitsyn
et al., 2007; Simmonds&Keay, 2009), the depth provides a directmeasure of the kinetic energy of the system.Deep
cyclones are identified by anomalously strong depth exceeding an arbitrary threshold chosen to be the 95th
percentile of cyclone depth distribution from ERA-Interim reanalyses, which corresponds to 20 hPa. The cyclone
size (radius) is determined as the average distance from the geometric center to the outermost closed isobar.

To select robust cyclone systems in the Arctic we excluded cyclones with a size less than 200 km or a depth
less than 2 hPa. All cyclones over regions with surface elevations higher than 1,000 m are also excluded from
the analysis due to larger uncertainty in the MSLP fields resulted from the extrapolation to the sea level. The
details of this algorithm and its application for detection of the variability and changes in cyclone activity over
the Arctic are discussed in previous study (Akperov et al., 2015).

3. Results
3.1. Spatial and Seasonal Cyclone Characteristics
3.1.1. Cyclone Frequency
Figure 1 displays the climatology of cyclone frequency for winter and summer frommultireanalysis and themulti-
model means for the period 1981–2010. The multimodel mean realistically reproduces the spatial pattern of
cyclone frequency in the Arctic as compared to multireanalysis data for both seasons. In winter, maxima of

Table 1
Reanalysis and Arctic CORDEX Models and Their Corresponding Information

Type
Institution/
country

Data/model
name

Original resolution
vertical, horizontal Nudging Sea-ice thickness Reference

Reanalyses ECMWF/UK ERA-Interim L60, 0.75° (~75 km) Dee et al. (2011)
NASA/USA MERRA2 L72, 0.5° × 0. 625° (~50 km) Gelaro et al. (2017)
NCEP/USA CFSR L64, 0.5° (~50 km) Saha et al. (2010)
JMA/JAPAN JRA55 L60, 0.5° (~50 km) Ebita et al. (2011); Kobayashi et al.

(2015);
PMG/ASR ASR L71, 15 km (~0.12°) Bromwich et al. (2017)

Regional Climate
Models (RCMs)

CCLM/Germany CCLM L60, 0.125° (~15 km) w/o PIOMAS climatology Gutjahr et al. (2016)
CCCma/Canada CanRCM4 L32, 0.44° (~45 km) Spectral (U, V, above

850 hPa)
Spatially varying

monthly climatology
Scinocca et al. (2016)

GERICS/Germany REMO L40, 0.5° (~50 km) w/o 2 m Sein et al. (2014, 2015)
AWI/Germany HIRHAM5-AWI L40, 0.5° (~50 km) Grid point (T, U, V, Q) 2 m Christensen et al. (2007);

Sommerfeld et al. (2015); Klaus
et al. (2016)

DMI/Denmark HIRHAM5-dmi L31, 0.44° (~45 km) w/o 2 m Christensen et al. (2007); Lucas-
Picher et al. (2012)

SMHI/Sweden RCA4 L40, 0.44°, (~45 km) w/o 1 m Berg et al. (2013); Koenigk et al.
(2015)RCASN Spectral (U, V, T,

above 850 hPa)
LU/Sweden RCA-GUESS L40, 0.44°, (~45 km) w/o 1 m Smith et al. (2011); Zhang et al.

(2014)
MGO/Russia RRCM L25, 50 km (~0.5°) w/o 1.5 m Shkolnik and Efimov (2013)
ULg/Belgium MAR3.6 L23, 50 km (~0.5°) Spectral (U, V, T for

lower
stratosphere)

0.5 m Fettweis et al. (2017)

UNI/Norway WRF3.3.1 L51, 0.44°, (~45 km) w/o 3 m Skamarock et al. (2008)
UQAM/Canada CRCM5 L55, 0.44°, (~45 km) w/o 0.001–2.5 m Martynov et al. (2013); Šeparović

et al. (2013); Takhsha et al.
(2017)

CRCMSN Spectral (U, V, above
850 hPa)

Note. U, zonal wind; V, meridional wind; T, temperature; Q, humidity; w/o, without nudging.
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cyclone frequency occur over Baffin Bay, Davis Strait, southeast of Greenland, and over the Nordic Seas. Compared
to winter, the cyclone frequency in summer is lower over the region between Greenland and Barents Sea and
higher over the land, in particular over Eastern Siberia, Chukotka, and Alaska and over the central Arctic. These
seasonal characteristics have been discussed in previous studies (e.g., Crawford & Serreze, 2016; Simmonds
et al., 2008; Wernli & Schwierz, 2006). The strongest intramodel variations in cyclone frequency are found over
the Baffin Bay, Foxe Basin, and over Eastern Siberia in winter and additionally over the Queen Elizabeth Islands,
and Alaska in summer.

The spatial Pearson correlation coefficients (R) between the individual models and ERA-Interim cyclone fre-
quency ranges from 0.87 (Weather Research and Forecasting version 3.3.1 [WRF3.3.1]) to 0.98 (CCLM) for
unnudged models and 0.97 (Canadian Centre for Climate Modelling and Analysis Regional Climate Model ver-
sion 4 [CanRCM4]) to 0.99 (Alfred Wegener Institute (AWI) RCM HIRHAM version 5 (HIRHAM5-AWI)) for nudged
models for winter. For summer, R vary from 0.75 (Voeikov Main Geophysical Observatory RCM (RRCM)) to 0.98
(Canadian Regional Climate Model [CRCM5]) for unnudged models and from 0.97 (CanRCM4) to 0.99
(HIRHAM5-AWI) for nudged models (Figures 1c and 1f). The spatial standard deviations (SDs) for both types
of models lie in the range from 4.1 to 5.8 (cyclones per season) in winter and from 4.4 to 6.7 in summer, except
for RRCM. Respective root-mean-square errors (RMSEs) vary from 0.6 to 2.5 (cyclones per season) for winter and
from 0.7 to 5.4 for summer. The spatial correlation coefficients for multimodel mean for nudged/unnudged
models with respect to ERA-Interim for winter and summer are 0.99/0.97 and 0.99/0.95, with SDs of 4.8/5.0
and 6.4/5.5 (cyclones per season), and RMSEs of 0.8/1.1 and 0.9/2.3 (cyclones per season), respectively.

(a) (b) (c)

(f)(d) (e)

10

8

6

4

2

0

10

8

6

4

2

0

Figure 1. Spatial distribution of cyclone frequency in (a and b) winter and (d and e) summer from multireanalysis and multimodel ensemble. The green isolines
indicate the standard deviations across the models or reanalyses. Taylor plots of cyclone frequency of models and reanalysis data for (c) winter and (f) summer
(black dots, reanalyses; asterisk, ASR reanalysis; red dots, nudged models; blue dots, nonnudged models; black circle, multireanalysis mean; red circle, nudged
multimodel ensemble mean; blue circle, nonnudged multimodel ensemble mean). Reference for Taylor plot is ERA-Interim (ref.).
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Most unnudged and three out of five nudgedmodels show a lower cyclone frequency (relative to ERA-Interim)
for the Arctic by up to 10% (RCA-GUESS) in winter (Figure 2). In summer, five models (of which one is nudged)
show this underestimation as well, and most models (including the nudged ones) show less frequent
occurrence of deep cyclones in both seasons. The underestimation ranges from 2% (RCM CRCM5with spectral
nudging (CRCMSN)) to 50% (RCM MAR version 3.6 (MAR3.6)) in winter and is up to 60% (MAR3.6) in summer
for nudged models. For unnudged models, this ranges from 4% (RCM REMO (REgional MOdel) (REMO)) to
27% (RCA-GUESS) in winter and is up to 70% (RCA-GUESS) in summer. The differences between reanalyses
for cyclone frequency are much smaller compared to the across-model differences. For the full overlapping
period, it should be noted that the highest cyclone frequency (with respect to ERA-Interim) is found in
MERRA2 in both seasons, and it is associated with shallow cyclones (e.g., Wang et al., 2016).

The frequency of cyclones over land is overestimated by all models in both seasons when compared to
ERA-Interim but with a large across-model variations. This overestimation varies from 9% (HIRHAM5-AWI) to
23% (RCM RCA4 with spectral nudging (RCASN)) for the nudged and from 10% (REMO) to 59% (RRCM) for
the unnudged models in winter. In summer, it varies from 2% (RCASN) to 34% (MAR3.6) and from 4%
(RCA-GUESS) to 45% (RRCM), respectively. In contrast, most models underestimate the cyclone frequency over
oceans in both seasons. This can reach up to 20% (WRF3.3.1) in winter and 23% (REMO) in summer. For nudged
models, the variance is small and reaches up to 10% (RCASN) in winter and 3% in summer. Hence, variations in
cyclone frequency across the models are partly related to the high variability in cyclone frequency over land.

The seasonal cycle is well captured by all models with high cyclone frequency in summer and low frequency
in winter for all cyclones and a reverse seasonal cycle for deep cyclones (Figure 3). At the same time, models
with nudging show less intraensemble variability of monthly mean cyclone frequency values compared to
unnudged models. Figure 3 further shows that the spread across the models in cyclone frequency is similarly
high in all months for the unnudged models than for the nudged ones.
3.1.2. Cyclone Depth and Size
Themultimodel mean reproduces the spatial pattern of cyclonemean depth and size reasonably well when com-
pared to the results from multireanalysis data for both seasons (Figure 4). In winter, the deepest cyclones are
located in the region between Greenland and the Barents Sea. In summer, they shift toward the central Arctic
Ocean. Cyclones with largest radii are located over the central Arctic Ocean during both seasons. This agrees with
previous findings for the climatologicalmeandepth and size for theArctic region using different reanalysis (ERA-40
and NCEP-CFSR) and RCM data of RRCM (Akperov et al., 2015; Shkolnik & Efimov, 2013; Simmonds et al., 2008).

All individual models show good spatial correlation of cyclone mean depth in the Arctic for both seasons in
comparison with ERA-Interim; the correlation coefficients vary from 0.97 (MAR3.6)/0.96 (WRF3.3.1) to 0.99
(RCASN)/0.99 (CCLM) in winter and from 0.97 (MAR3.6)/0.96 (RRCM) to 0.99 (HIRHAM5-AWI)/0.99 (CRCM5) in
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summer for the nudged/unnudged models, respectively (Figures 4c and 4f). The spatial correlation coefficients
of cyclone mean depth for the nudged models are higher compared to the unnudged models. The
corresponding RMSEs and SDs are much smaller compared to cyclone frequency statistics. Standard deviations
are between 3.3/3.8 (2.9/2.8) hPa and 4.1/4.4 (3.4/3.3) hPa for winter (summer) for nudged/unnudged models
while RMSEs are quite low for most of the models. The multimodel mean for nudged models outperforms
that from the unnudged models for both seasons and is close to the multireanalysis mean.

Most Arctic CORDEX models show smaller cyclone mean depth when compared with ERA-Interim for both
seasons (Figure 2). This underestimation varies from 1% (HIRHAM5-AWI) to 4% (CRCMSN) for the nudged
models in winter with MAR3.6 being an outlier (17%). In summer, four out of five nudged models underesti-
mate cyclone mean depth that varies from 1% (HIRHAM5-AWI) to 10% (MAR3.6). Six out of eight unnudged
models show a smaller cyclone mean depth of up to 9% (WRF3.3.1) in winter. In summer, six models show a
smaller mean depth and this underestimation varies from 6% (RCA4) to 17% (WRF3.3.1).

The spatial correlation for cyclone mean size between Arctic CORDEX model simulations and ERA-Interim is also
high (larger than 0.98/0.96 for nudged/unnudged models) (Figures 4i and 4l). The RMSEs vary from 31/34
(12/21) km to 52/72 (61/75) km, and SDs vary from207/204 (211/211) km to 246/247 (263/265) km for winter (sum-
mer) for nudged/unnudged models. The spatial correlation coefficients for the multimodel mean for summer
are slightly higher for both type of models than the coefficients for winter, with R = 0.99/0.97 (0.99/0.98) with
SD = 227/228 (241/240) km and RMSE = 39/58 (21/46) km for winter (summer) for nudged/unnudged models.

Most models consistently simulate smaller cyclones compared to ERA-Interim (Figure 2). Three out of five nudged
models show a smaller mean size by up to 13% (CRCMSN) in winter and by up to 10% (MAR3.6) in summer. Five
out of eight unnudged models underestimate cyclone mean size by up to 16% (WRF3.3.1) for winter. In summer,
six models show too small cyclone mean size, which varies from 2% (RCA-GUESS) to 18% (RRCM).

The frequency distributions of cyclone depth and size (Figure 5) show that shallow and small cyclones occur
most often. The across-model variation is, in general, small for both nudged and unnudged models in both
seasons. But substantial variations across themodels occur for shallow cyclones (depth of up to 4 hPa) and for
small cyclones (radius of up to 400 km) for both seasons. However, the nudged models show less variation
compared to the unnudged models.
3.1.3. Intercomparison of ASR With Other Reanalyses
Recent results from the analysis of cyclone activity in the Arctic using high-resolution ASR have shown an
advantage of this reanalysis relative to global reanalyses (Smirnova & Golubkin, 2017; Tilinina et al., 2014).
ASR is not employed to the same degree as the four more widely used reanalyses in this study due to its

250

300

350

400

450

500

fr
eq

u
en

cy
, [

1/
se

as
o

n
]

(a) all cyclones

1 2 3 4 5 6 7 8 9 10 11 12
months

0

10

20

30

(b) deep cyclones

MERRA2
CFSR
JRA55
ERA-Interim

Figure 3. Annual cycle of cyclone frequency for (a) all and (b) deep cyclones frommultireanalysis data and the multimodel
ensemble (nudged [red] and nonnudged [blue]). The latter is given in box-whisker format and shows the minimum and
maximum values, the lower and upper quartiles, and the median.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027703

AKPEROV ET AL. 2543



(a)

(d) (e) (f)

(b) (c)

6

5

4

3

2

0

6

5

4

3

2

0

(g) (h) (i)

(l)(k)(j)

Figure 4. Spatial distribution of (a, b, d, and e) cyclone mean depth (hPa) and (g, h, j, and k) size (km) in (a, b, g, and h) winter and (d, e, j, and k) summer from
multireanalysis and multimodel ensemble. The green isolines indicate the standard deviations across the models or reanalyses. Taylor plots for (c and f) depth
and (i and l) size are also given (same legend as in Figure 1).

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027703

AKPEROV ET AL. 2544



short time period (2000–2012). However, it is illuminating to compare results from ASR with those based on
the four reanalyses adopted in this study.

Here we compare cyclone characteristics obtained from ASR and ERA-Interim reanalyses. Given the limited
period of ASR reanalysis, we analyzed the cyclone climatology from both reanalyses for the overlapping per-
iod. Tilinina et al. (2014) noted a considerably higher number of cyclones over the Arctic with the largest dif-
ferences over land using the previous version of ASR reanalysis. We also get similar results using the latest
version of ASR. As we mentioned above, ASR shows the highest cyclone frequency relative to ERA-Interim
for both seasons, in particular over land (Figure 2). However, cyclone frequency over ocean is underestimated
in winter and slightly overestimated in summer by ASR relative to ERA-Interim. This discrepancy is related to
smaller cyclones, which are excluded from our analysis. However, if we remove the restrictions on cyclone
size, we obtain the highest cyclone frequency over ocean in winter. This indicates that ASR counts for more
small (and shallow) cyclones compared to ERA-Interim. ASR underestimates the number of deep cyclones
and overestimates cyclone mean depth over land in winter compared to ERA-Interim. In summer, ASR shows
less cyclone frequency only over ocean. It should also be noted that values of 95th percentile for cyclone
depth distribution in case of ASR and ERA-Interim reanalyses differ by ~25% (ASR shows lower value for deep
cyclones than any other reanalyses).

Taylor diagrams showing spatial correlations between cyclone frequency from ASR and other reanalyses for
the 2000–2010 period are presented in supporting Figure S1. The spatial correlation coefficients between the
ASR and individual reanalyses for cyclone frequency are lower in winter and ranges from 0.75 (JRA55) to 0.84
(MERRA2) with corresponding standard deviations (5.0–5.6) and RMSEs (3.2–3.8) (cyclones per season). In
summer, correlations are high and ranges from 0.94 (CFSR) to 0.97 (MERRA2) (Figure S1) with SDs (6.9–7.2)
and RMSEs (1.6–2.5). Therefore, MERRA2 is more closest to ASR than other reanalyses. Both reanalyses show
highest number of cyclones in both seasons.

3.2. Trends in Cyclone Characteristics

The analysis of the 30 year (1981–2010) trends in cyclone frequency shows that most models simulate a
decrease for winter and summer, but these trends are not statistically significant (Figure 6a). In contrast,
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the reanalyses disagree with each other. In winter, two of them show an increase, whereas the other two
exhibit a decrease. In summer, most (three of four) show negative trends. The nudged models
demonstrate a different behavior in both seasons: three models (CanRCM4, RCA4, and CRCMSN) show the
same trend signs as ERA-Interim and the other two models agree with CFSR and JRA55. Only four (out of
seven) models without nudging show the same behavior as in reanalyses.

Most reanalyses show consistent trends for the frequency of deep cyclones (Figure 6b), with an increase in winter
and a decrease in summer. Conversely, most of the models show a decrease in winter and an increase in summer
for deep cyclones. Three nudgedmodels show the same trend as themost reanalyses for both seasons. However,
trend signs from one (CRCMSN) nudged model are similar to JRA55. Most unnudged models show different
trend signs. However, some outliers are observed for all and for deep cyclones. For all cyclones, the strongest posi-
tive (REMO) and negative (CanRCM4 and CRCMSN) trends are observed in summer. In the case of deep cyclones,
the strongest trends are noted in winter: positive in WRF3.3.1 and negative in CRCM5. None of the trends in deep
cyclones are statistically significant.
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The trends for cyclone mean depth are consistent across the reana-
lyses. However, only half (including four models with nudging) of
the models show the same trend signs for both seasons (Figure 6
c). They show a small increase in winter and a decrease in summer.
The summer trends are significant for 2 of the 13 models and for all
reanalyses. The same across-model and reanalysis agreement is
seen for the trend in cyclone mean size: increase in winter and
decrease in summer. And, the majority of the models (five nudged
and two unnudged) show similar trends as in the reanalyses.

Figure 7 shows the agreement in the spatial patterns of trends for
cyclone frequency in both seasons. The model patterns agree with
the reanalyses on key regional trends. In winter, they show an increase
over Norwegian Sea, Davis Strait, Spitsbergen region, Laptev Sea, and
north of the Canadian Archipelago and a decrease over the Barents
and Kara Seas, Greenland Sea, and over the southeast of Greenland.
In summer, they agree on an increase over the Barents Sea, parts of
Kara Sea and Laptev Sea, over the Canadian Archipelago, and over parts
of eastern Siberia and a decrease in the Baffin Bay, Greenland and
Norwegian Seas, and East Siberian, Chukchi, and Beaufort Seas.
Discrepancies betweenmodels’ and reanalyses’ trends of cyclonemean
depth and size in winter (Supporting Figures S2 and S3) arise over the
Norwegian Sea. Reanalyses show an increase of cyclone mean depth
and size over this region, whereasmost of themodels show a decrease.

Spatial correlation coefficients for cyclone frequency trends
between RCMs and ERA-Interim range from 0.48/0.38 (CRCM5/
CanRCM4) to 0.94/0.95 (HIRHAM5-AWI) for the nudged models
and from �0.01/�0.25 (RCA-GUESS/RRCM) to 0.80/0.37 (CCLM/
WRF3.3.1) for the unnudged models for winter/summer (Table 2).
Most models with SN reproduce the spatial trends of cyclone char-
acteristics reasonably well. It should be noted that spatial correlation
for all cyclone characteristics trends in case of reanalyses is higher
for both seasons in comparison with the majority of the models.

One of the reasons leading to the differences in cyclone characteris-
tics and their trends described above may be related to the repre-
sentation of zonal wind in the troposphere, in particular the jet
stream. Some authors (e.g., Pinto et al., 2007; Zappa et al., 2013)
stressed a significant role of the jet stream in representing cyclone
activity over the North Atlantic in GCMs. Berg et al. (2013) indicated
a key role of nudging in RCMs for reducing the biases in the free tro-
posphere and the MSLP. Our results also confirm that most models
with nudging accurately reproduce both the spatial pattern of
cyclone characteristics and their trends. However, only three out of
five nudged models can reproduce spatial trends correctly for all
cyclone characteristics (Table 2). The other two nudged models
(CanRCM4 and CRCMSN) show a high spatial correlations for cyclone
frequency but lower correlations for cyclone mean depth and size.
These models nudged the winds, whereas the other models addi-
tionally also nudged the temperature at different levels (Table 1).
This led to improved cyclone representation and their changes.
Although CCLM was not nudged, it was run in a forecasting proce-
dure; that is, it started every day with new initial conditions from
ERA-Interim (and external sea-ice fields) without nudging during a
day-long simulation (see, e.g., Lucas-Picher et al., 2013). With suchTa

b
le

2
Sp
at
ia
lC

or
re
la
tio

n
Co

ef
fi
ci
en
ts
fo
r
Cy
cl
on

e
Ch

ar
ac
te
ris
tic

Tr
en
ds

(W
in
te
r/
Su
m
m
er
)
Fr
om

RC
M
s
(N
ud

ge
d
M
od

el
s—

Ita
lic
)
an

d
ER
A-
In
te
rim

fo
r
W
in
te
r
an

d
Su
m
m
er

(W
he
re

O
ra
ng

e
>
0.
5,

G
re
en

>
0.
7,
an

d
Re
d
>
0.
9)

M
ER

RA
2

C
FS
R

JR
A
55

C
C
LM

Ca
nR

CM
4

RE
M
O

H
IR
H
A
M
5-
A
W
I

H
IR
H
A
M
5-
dm

i
RC

A
4

RC
A
SN

RC
A
-G
U
ES
S

RR
C
M

M
A
R3

.6
W
RF

3.
3.
1

C
RC

M
5

CR
CM

SN

C
yc
lo
ne

fr
.

0.
79

/0
.7
8

0.
82

/0
.8
6

0.
78

/0
.8
9

0.
80

/�
0.
50

/0
.3
8

0.
10

/0
.0
1

0.
94

/0
.9
5

0.
13

/0
.3
2

0.
10

/0
.2
5

0.
61

/0
.8
4

�0
.0
1/
0.
24

0.
35

/�
0.
25

0.
77

/0
.8
2

0.
10

/0
.3
7

�0
.1
4/
0.
15

0.
48

/0
.5
2

M
ea
n
de

pt
h

0.
58

/0
.6
8

0.
68

/0
.6
7

0.
64

/0
.8
1

0.
63

/�
0.
10

/�
0.
01

0.
25

/�
0.
17

0.
79

/0
.8
6

0.
07

/�
0.
07

�0
.2
5/
0.
04

0.
43

/0
.6
5

0.
12

/�
0.
11

�0
.0
9/
0.
09

0.
51

/0
.5
1

�0
.0
9/
�0

.2
9

0.
20

/0
.2
3

0.
30

/0
.3
9

M
ea
n
si
ze

0.
52

/0
.6
3

0.
54

/0
.5
6

0.
46

/0
.7
5

0.
52

/�
0.
06

/�
0.
01

0.
11

/�
0.
06

0.
60

/0
.8
0

0.
04

/�
0.
14

�0
.0
4/
�0

.1
2

0.
30

/0
.6
5

0.
06

/�
0.
28

�0
.0
1/
�0

.1
8

0.
34

/0
.5
4

�0
.0
9/
�0

.2
7

0.
14

/0
.3
8

0.
26

/0
.2
4

N
ot
e.
RC

M
=
re
gi
on

al
cl
im

at
e
m
od

el
;M

ER
RA

-2
=
M
od

er
n-
Er
a
Re

tr
os
pe

ct
iv
e
an

al
ys
is
fo
rR

es
ea
rc
h
an

d
A
pp

lic
at
io
ns

Ve
rs
io
n
2;
C
FS
R
=
C
lim

at
e
Fo

re
ca
st
Sy
st
em

Re
an

al
ys
is
;J
RA

55
=
Ja
pa

ne
se

55
-y
ea
r

re
an

al
ys
is
;C
C
LM

=
C
O
SM

O
C
lim

at
e
Li
m
ite

d-
ar
ea

M
od

el
;C
an

RC
M
4
=
C
an

ad
ia
n
C
en

tr
e
fo
rC

lim
at
e
M
od

el
lin

g
an

d
A
na

ly
si
s
Re

gi
on

al
C
lim

at
e
M
od

el
ve
rs
io
n
4;
RE

M
O
=
RC

M
RE

M
O
(R
Eg

io
na

lM
O
de

l);
H
IR
H
A
M
5-
A
W
I=

A
lfr
ed

W
eg

en
er

In
st
itu

te
(A
W
I)
RC

M
H
IR
H
A
M
ve
rs
io
n
5;
RC

A
4
-T
he

Ro
ss
by

C
en

tr
e
RC

M
;H

IR
H
A
M
5-
dm

i-
D
an

is
h
M
et
eo

ro
lo
gi
ca
lI
ns
tit
ut
e
(D
M
I)
RC

M
H
IR
H
A
M
ve
rs
io
n
5;
RC

A
SN

=
RC

M
RC

A
4

w
ith

sp
ec
tr
al

nu
dg

in
g;

RC
A
-G
U
ES
S

=
RC

M
RC

A
4

co
up

le
d

w
ith

dy
na

m
ic

ve
ge

ta
tio

n
an

d
ec
os
ys
te
m

bi
og

eo
ch
em

is
tr
y
si
m
ul
at
ed

by
th
e

ve
ge

ta
tio

n-
ec
os
ys
te
m

m
od

el
LP
J-
G
U
ES
S;

RR
C
M

=
Vo

ei
ko

v
M
ai
n
G
eo

ph
ys
ic
al
O
bs
er
va
to
ry

RC
M
;M

A
R3

.6
=
RC

M
M
A
R
ve
rs
io
n
3.
6;
W
RF

3.
3.
1
=
W
ea
th
er

Re
se
ar
ch

an
d
Fo

re
ca
st
in
g
ve
rs
io
n
3.
3.
1;
C
RC

M
5
=
C
an

ad
ia
n
Re

gi
on

al
C
lim

at
e
M
od

el
;

C
RC

M
SN

=
RC

M
C
RC

M
5
w
ith

sp
ec
tr
al
nu

dg
in
g.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027703

AKPEROV ET AL. 2548



a setup, CCLM could not drift far from ERA-Interim. Therefore, this might explain the high correlations with
the reanalysis.

The primary factor affecting the generation and evolution of cyclones in high latitudes is the baroclinicity of the
atmosphere. There are two factors influencing the baroclinicity and cyclone activity—Brunt-Väisälä frequency,
which is related to the vertical temperature gradient and is a measure of stratification, and vertical wind shear,
which is related to the horizontal temperature gradient. Therefore, a possible explanation of intramodel differ-
ences is that a different representation of the vertical and horizontal temperature distribution in the models
may change the stability in the atmosphere and, hence, impact on cyclone characteristics and their variability
in the Arctic. For instance, the Rossby radius (cyclone size) depends only on a vertical stratification of the tem-
perature (Brunt-Väisälä frequency) and is connected with cyclone depth (e.g., Golitsyn et al., 2007). This explains
the impact of temperature nudging on simulated cyclone characteristics. But to investigate the specific impacts
of nudging, dedicated experiments with different nudged variables are needed.

3.3. Impacts of Nudging Applied to Cyclone Characteristics

To examine the connection of atmospheric circulation fields with cyclone activity representation in the Arctic,
we compared 850 hPa (U850) and 200 hPa (U200) winds simulated by the Arctic CORDEX models with ERA-
Interim data. Evaluation of the winds shows that the spatial correlations between the nudged models and
ERA-Interim for U850 vary from 0.5/0.8 (MAR3.6) to 0.6/0.9 (HIRHAM5-AWI) for winter/summer. In case of
U200, the spatial correlations are higher for all RCMs and exceed 0.9 (only MAR3.6 shows R = 0.8) for both
seasons. As expected, the models without nudging (excluding CCLM which shows high correlations for both
seasons) have lower spatial correlation overall, in particular for upper-level zonal wind.

We find a significant connection between the zonal wind and the frequency of deep cyclones and cyclone
mean depth over the Arctic. Correlation between U200 and frequency of deep cyclones among all models

(a)

(c) (d)

(b)

Figure 8. Differences “RCASN minus RCA” in spatial distribution of (a and b) deep cyclone frequency and of (c and d) u850
(m/s) in winter and summer for the period 1981–2010. The black isolines in (c and d) indicate differences of u200 (m/s).
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is statistically significant (R ~ 0.5) and higher than for U850 in winter. In summer, statistically significant
positive correlation is found between U200 and cyclone mean depth. It should be noted that zonal winds
at 200 and 850 hPa are underestimated in most of the models compared to ERA-Interim, which possibly
leads to an underestimation in cyclone mean depth and frequency of deep cyclones in the Arctic.

The cyclone characteristics from the nudged models relative to ERA-Interim show fewer differences than the
unnudged ones, in particular in summer (Figure 2). However, large intraensemble variability for deep
cyclones occurs. Some models (CanRCM4 and MAR3.6) with nudging show no differences in the analyzed
characteristics for all cyclones in both seasons but they differ in representation of deep cyclones in winter.
CRCM5 and CRCMSN show almost no differences for the cyclone characteristics in winter. It seems that
CRCM5 reproduces the cyclone activity quite well, in particular the atmospheric circulation when compared
to ERA-Interim. Thus, the additional nudging applied to CRCM5 cannot further improve the results as much as
in RCA4. In summer, most models, including the nudged models (CanRCM4, HIRHAM5-AWI, RCASN, and
MAR3.6) underestimate the deep cyclone occurrence.

To better understand the role of nudging in representing cyclone characteristics, we focus here on the twomodels
that were run with SN and without nudging, namely, RCA and RCASN, and CRCM5 and CRCMSN, respectively.
CRCMSN only nudges wind fields, whereas in RCASN both wind and temperature fields are nudged (see Table 1).

RCA4 and RCASN show small differences in cyclone frequency compared to ERA-Interim for both seasons
(Figure 2). However, RCA4 underestimates the frequency of deep cyclones with respect to RCASN for both
seasons, while RCASN is in a better agreement with ERA-Interim. Thus, SN improves deep cyclone represen-
tation over the Arctic, particularly in summer. In summer, the model differences occur over the Arctic Ocean,
while in winter, it occurs along the sea-ice edge over the area between Greenland and Barents Sea (Figures 8a
and 8b). We analyzed the 200 and 850 hPa zonal wind from both versions of the model (Figures 8c and 8d). In
winter, in the area of deep cyclone activity in the Nordic Seas, RCASN simulates stronger U200 and U850

(a)

(c) (d)

(b)

Figure 9. As Figure 8 but for “CRCMSN minus CRCM.”
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winds compared to RCA4. The same is seen over the central Arctic Ocean in summer. RCASN wind is in a close
agreement with ERA-Interim. The spatial correlation coefficients between the RCASN and ERA-Interim zonal
winds for the two levels are a bit higher (R = 0.94 and 0.65 in winter, R = 0.88 and 0.92 in summer) than in the
case of RCA4 (R = 0.93 and 0.63 in winter, R = 0.82 and 0.80) for both seasons. This confirms a connection
between the strength of the zonal wind and deep cyclone frequency, which has been discussed previously
(e.g., Seiler & Zwiers, 2016; Zappa et al., 2013).

CRCM does not show such big differences with and without nudging. CRCM5 and CRCMSN show approxi-
mately the same differences for all and deep cyclone frequency compared to ERA-Interim for both seasons
(Figure 2). It seems that the nudging does not influence the overall cyclone frequency in this model, but it
affects their spatial distribution. (Figure 9). CRCM5 overestimates the frequency of deep cyclones (relative
to CRCMSN) over the Barents and Laptev Seas and underestimates it over the Southeast Greenland and over
the Greenland Sea in winter. In summer, CRCM5 overestimates the frequency of deep cyclones over the cen-
tral Arctic Ocean and underestimates it over the Laptev Sea. Compared to CRCMSN, CRCM5 overestimates the
200 and 850 hPa zonal wind almost everywhere in the Arctic. However, the amplitude of change is small.

4. Summary and Conclusion

The ability of the RCMs participating in the Arctic CORDEX to simulate the cyclone activity in the Arctic region
in comparison with reanalysis data is assessed. Different characteristics of cyclone activity are intercompared
in the ensemble of RCMs hindcast simulations and multireanalysis data (ERA-Interim, NCEP-CFSR, NASA-
MERRA2, and JMA-JRA55) for winter and summer during the 1981–2010 period. Biases in cyclone frequency,
intensity, and size over the Arctic (region ~north of 65°N) are quantified.

Themajority of themodels accurately reproduce the spatial distribution of cyclone characteristics (frequency,
mean depth, and size) when compared to reanalysis data. The models are able to reproduce the distributions
of the mean depth and size of the deepest cyclones in the region between Greenland and Barents Sea in win-
ter and over the central Arctic in summer and the largest cyclones over the eastern part of the Arctic Ocean
during both seasons. The strongest variations in cyclone frequency among the reanalysis and model data are
observed over the Baffin Bay, Foxe Basin, and over Eastern Siberia in winter and additionally over the Queen
Elizabeth Islands and Alaska in summer. It is related to small and shallow cyclones (depth up to 4 hPa and
radius up to 400 km) for both seasons.

Generally, there are many factors that affect the intramodel differences. (i) Differences in cyclone frequency
across the models are observed over areas with complex coastlines and orography in both seasons. It is known
that orographic forcing plays an important role in cyclone formation and its life cycle, as well as in shaping the
jets (e.g., Brayshaw et al., 2009; Kristjansson & McInnes, 1999; Tsukernik et al., 2007). (ii) Sea-ice concentration
and thickness play a significant role in changing the heat transfer between the ocean and atmosphere in high
latitudes, leading to changes of large-scale atmospheric circulation, vertical stability, and therefore cyclone
activity changes (Inoue et al., 2008; Jaiser et al., 2012; Lang et al., 2017; Semenov & Latif, 2015). Vertical stability
can also influence polar mesoscale circulation, particularly for the polar lows. Polar lows are intense polar
mesocyclones that are characterized by a short lifetime (less than one day) and a relatively small size (diameter
less than 1,000 km). They form during the cold seasons over relatively warm ocean surface (Heinemann & Claud,
1997; Mokhov et al., 2007). For instance, differences in the number of polar lows in GCMs are associated with
the differences in mean vertical stability (Zahn & von Storch, 2010). In case of regional models, the reason for
differences in cyclone characteristics across the models may also be due to incorrect representation of physical
processes at regional scales, particularly at the mesoscale, which influences the background conditions of
cyclone genesis and growth. (iii) Land-sea contrast, which can vary depending on amodel’s land-surface scheme,
can also influence the cyclone activity. In summer, when cyclone activity occurs over land, and a heating
contrast between the Eurasian continent and Arctic Ocean develops (e.g., Serreze & Barrett, 2008), this mechan-
ism plays a significant role. In winter, thermal contrasts develop between relatively warm open ocean water
(North Atlantic drift) and the Greenland ice sheet. Such gradients can help to support cyclone development in
this area (including mesoscale polar cyclones) (Serreze et al., 1993, 1997).

Most Arctic-CORDEX models show an insignificant decrease of cyclone frequency in winter and summer. The
reanalyses also show disagreements, particularly in winter. The frequency of deep cyclones, however,
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significantly increases (decreases) for the reanalyses in winter (summer), but models exhibit mixed results.
Trends for cyclone mean depth and size are characterized by an increase in winter and decrease in summer.
These changes are significant for 2 of the 13 model simulations and for all reanalyses. Furthermore, the mod-
els agree with the reanalyses on the key regional spatial trend patterns.

We find significant connections between zonal wind and the frequency of deep cyclones and cyclone mean
depth over the Arctic. Our results show that an underestimation of zonal winds in RCMs compared to ERA-
Interim may lead to underestimation in cyclone mean depth and frequency of deep cyclones in the Arctic.

The intercomparison reveals that RCMs with large-scale spectral wind nudging represent the cyclone activity
characteristics in the Arctic region much better due to the forced representations of zonal winds as expected.
Biases are further reduced by additional nudging of temperature. Hence, along with previous studies, we
speculate that nudged variables and nudging strength may play a significant role in the representation of
cyclone characteristics and trends, in particular, cyclone depth and size over the Arctic region.
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Erratum

In the originally published version of this article, a portion of Figure 4 was left out. This information has
since been added to the figure, and this version may be considered the authoritative version of record.
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